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1. I n t r o d u c t i o n  

A hypersurface given by the intersection of the hyperbolic n-space H~ ( - 1 )  with 

a spacelike, timelike or lightlike hyperplane of ~ + 1  is respectively called hy-  

pe r sphe re ,  equ id i s t an t  h y p e r p l a n e  or h y p e r h o r o s p h e r e .  The last have 

the property of inheriting a euclidean geometry as submanifolds of the hyper- 

bolic space. A great deal of the properties of submanifolds of euclidean spaces 

can be studied by analyzing their contacts with invariant subsets, such as hy- 

perplanes or hyperspheres, of the ambient space as can be appreciated in the 
classical references [6], [14]. A modern treatment based on recently developed 

techniques of singularity theory can be found in [8], [9] or [10]. In a similar 

way, the study of the contacts of a submanifold M c H~_(-1) with the hy- 

perhorospheres leads to the horospherical geometry of M. An introduction to 

this for hypersurfaces in H ~ ( - 1 )  has been given in [3]. On the other hand, the 

geometry associated to the contacts of surfaces with lightlike hyperplanes in R~ 

has been described through the analysis of the singularities of the l igh tcone  

he igh t  func t ions  f ami ly  defined in [4]. These are closely related to those of 

the lightcone Gauss map. The contacts that  concern us here, namely those of a 

surface M = g(U) C H~_(-1) with hyperhorospheres, can be similarly described 

by means of the l igh tcone  he igh t  func t ions  f ami ly  7-/: M • S~_ ~ ~. This 

setting allows us to show that  M may have a stronger contact with certain hy- 

perhorospheres at some points. We call them oscu la t ing  h y p e r h o r o s p h e r e s .  

They play a role which is equivalent to that  of the osculating hyperplanes of 

surfaces immersed in euclidean 4-space ([8]). We notice that  there is an essential 

difference: whereas in the euclidean case the maximum number of osculating hy- 

perplanes at a point of a generic surface is 2, we shall show that  in our case there 
may be up to four osculating hyperhorospheres (Proposition 4.4). We define the 

ho rospher i ca l  po in t s  as those at which some osculating hyperhorosphere has 

a contact of cor~nk 2 with the surface. They are analogous, in the horospherical 

geometry, to the inflection points of the euclidean geometry. We show in Propo- 

sition 4.6 that  the curvature ellipse at these points is degenerate (i.e., they are 

semiumbilic, see [5]). We characterize them as critical points of certain direc- 

tion fields on M that  we call h o r o a s y m p t o t i c .  We obtain some conditions that 

guarantee: (a) the global existence of such fields on the surface (Theorem 5.2), 

and (b) the existence of horospherical points (Corollary 5.3). This leads us to 

put forward the following horospherical version of Carath~odory's conjecture: 

Any 2-sphere immersed as an everywhere horohyperbolic surface in hyperbolic 

4-space has at least 2 horospherical points. 
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Finally, we show that,  provided the horoasymptotic fields are globally defined 

on M, the total senfiumbilicity implies the orthogonality of their integral lines 

(Theorem 5.4). 

2. Bas ic  c o n c e p t s  and n o t a t i o n s  

We consider the (n + 1)-dimensional Minkowski space (~,~+1, ( , /) ,  with the 

pseudo-scalar product given by 

We shall denote this space by ]~+1. 

We say that a vector x -- ( x l , . . . ,  xn+l) E ] ~ + l \ { 0 }  is spacel ike ,  t ime l ike  

or l ight l ike provided (x, x) > 0, = 0 or < 0, respectively. The norm or length 
of a vector x e I~  is defined by []xI[ -- (l(x,x)[) 1/~. 

Given a vector v E ]~+1 and a real number c, we define a h y p e r p l a n e  w i t h  

p s e u d o n o r m a l  v as 

P(v,c) = {x e R~+ll(x, v) = c}. 

This hyperplane is said to be spacel ike ,  t ime l ike  or l ight l ike  according as v 

is timelike, spacelike or lightlike. 

We define the h y p e r b o l i c  n - space  by 

H~_(-1) -- {x e --  - 1 , x i  e 1}. 

Any non-empty hypersurface of H ~ ( - 1 )  determined by the intersection of 

H~_(-1) with either a spacelike, a timelike or a lightlike hyperplane is respec- 

tively called a h y p e r s p h e r e ,  e q u i d i s t a n t  h y p e r p l a n e  or h y p e r h o r o s p h e r e .  

Another relevant set, known as the n - d i m e n s i o n a l  l i gh t cone  w i t h  v e r t e x  

a in ]R~ +1, is the following: 

LCa = {x e R ~ + I [ ( x  - -  a , x  - a} = 0}. 

The subset 

S~_-l(a) = {X---- (Xl,X2,...,xn+l)[(x--a,x--a) =O, Xl : a l - 4 -  1} 

is the l i gh t cone  (n - 1 ) -sphere  centered at a = (al,a2,... ,an+l). It will be 

denoted as S~_ -1 when centered at the origin. 

Suppose that  M is a surface immersed in ]R~ +1. We say that  M is a space l ike  

su r face  if the tangent plane TxM is spacelike (i.e., consists of spacelike vectors) 
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and thus a euclidean plane (T~M, (,)) for every point x E M. In this case, the 

normal space N x M  is a Lorentz (n - 1)-space ((NxM, (,)). 

3. Second  f u n d a m e n t a l  form and curvature  el l ipses  

Given a smooth oriented surface M immersed in R 5, we denote respectively by 

A'(M) and Af(M) the space of the smooth vector fields tangent to M and the 

space of the smooth vector fields normal to M. Consider the second fundamental 

map, 

a: X ( i )  x X ( M )  ---* Af(M),  a (X ,  Y )  = V R Y  - V x Y ,  

where V denotes the pseudo-riemannian connection of ~15, and ) (  and Y are 

local extensions of the tangent vector fields X and Y on M. This map is well 

defined, symmetric and bilinear. Given any normal field v C Af(M)\{0},  we 

have for each x E M a function 

av: TxM x TxM ) 

( v , w )  . , w ) , . ( x ) ) ,  

which is also symmetric and bilinear. The second fundamental form of M at x 

is the associated quadratic form, 

IIv :TxM ~ R 

. , 

Suppose that  M is locally defined at x by g: R 2 --~ R 5 such that  g(0, 0) -- x. 

Choose local isothermic coordinates {x, y} on M and a pseudo-orthonormal 

frame, {e:,e2, e3, ea,e5} in a neighborhood of x = g(0,0) E M, such that  

{el, e2, e3} is a normal frame and {ca, e5} a tangent frame, with (e:, e:) = - 1  

and (ei, ei) = 1, i = 2 , . . . ,  5. Then the matr ix  of the bilinear form ~e~ is given 

by 
[ a i b i ]  

a e , ( x ) =  bi ci ' 

where if ds 2 = E(dx 2 + dy 2) is the first fundamental form, we have 

ai = -~ \ ~x 2 , -E i '  E \ Oy 2 "-' 

for i = 1,2,3. 

Given x c M,  consider the linear map induced by the second fundamental 

form on M, Ax : N x M  ---* Q2, where Q2 is the space of quadratic forms in two 

variables. Tha t  is, Ax(v)  = I I v , V v  e N~M. 
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We have, in the above coordinates, that  if v - Vlel + v2e 2 -~- v3e3, then 

Ax (v) = 1 (vl (d2g(O, 0), el) + v2 (d2g(O, 0), e2) + v3 (d2g(O, 0), e3 )). 
12t 

And thus the matrix of Ax is 

al bl Cl]  
a2 b2 c~ . 
a3 b3 c3 

We say that  a point x E M is of type Mi, i = 3 ,2 ,1 ,0  provided rankAx -- i. 

It was shown in ([9], Propositions 2 and 3) that  for generic surfaces in euclidean 

5-space the M3-points fill an open and dense submanifold, whereas the M2-points 

form closed regular curves and the Ml-points and Mo-points can be avoided. We 

observe that  the arguments of [9] can be easily adapted to our case, so we can 

conclude that  the same assertions hold for generic spacelike surfaces immersed 

in 5-dimensional Minkowski space. 

Given x E M, consider the unit circle in T x M  parametrized by the angle 

0 E [0, 2zc]. Denote by 7e the spacelike curve obtained by intersecting M with 

the timelike hyperplane defined by the direct sum of the normal subspace N,:M 

and the straight line in the tangent direction represented by 9. The curvature 

vector 7/(9) of 70 in x lies in the timelike hyperplane N x M .  Varying 9 from 0 to 

27~, the vector ~/(8) describes an ellipse in N x M ,  called the c u r v a t u r e  e l l ipse  

of M at x. This ellipse is the image of the affine map (the case n = 3 has been 

described in [5] and the case n _> 4 is a straightforward generalization) 

~: S 1 ~ T x M  > N x M  

given by 

that is, 

where 

, ~ / ( t ~ ) = E [ c o s O  sinO], bi "[sint~J "ei' 
i=1 

~(0) = D .  + Bx cos 29 + Cx sin 20, 

3 
1 1 

Dx = ~(a l  ~- c1)el - ~ E ( a i  -~ c i ) . e i  , 
i=2 
3 

1 1 
B x ---- ~ (a  I - c1)e 1 - ~ E  (ai - -Ci)*e i ,  

i=2 
3 

Cx = blel - Z bi �9 ei. 
i=2 
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LEMMA 3.1: Given a spacelike surface M c R 5, the subspace KerA~ deter- 

mined by the kernel of A~ in N x M  is pseudo-orthogonal to the vectors Bx and 

Cx that define the curvature ellipse. 

Proof: We can assume that  x E Mi, i < 3, otherwise KerAx -- {0} and 

the result is trivial. Given v = vle I W v2e2 + v3e3 E KerAx,  we have that  

a l V l  -~- a2v2-{-a3v3 = b lVl  -I-b2v2 ~-b3v3 = ClVl -t-c2v2 T c 3 v 3  = O. Then 2(v, Bx) = 

- - v l ( a l - - C l ) - - v 2 ( a 2 - - c 2 ) - - v 3 ( a 3 - - c 3 )  = 0 a n d  (v ,  Cx> = - V l b l - v 2 b 2 - v 3 b 3  = O. 

| 

The curvature ellipse at x is contained in the Lorentz 3-space N x M  and may 

degenerate (to a segment, or even to a point) at certain points of x E M. These 

are called semiumbi l i cs .  A semiumbilic point x is said to be spacelike~ t ime-  

l ike or l ight l ike  provided the curvature segment defines respectively a spacelike, 

timelike or lightlike direction in N~M.  The points at which the curvature el- 

lipse becomes a point are known as umbil ics .  It is a straightforward exercise to 

verify that  any semiumbilic point is of type Mi, i < 3. We notice that  although 

Ml-points are either semiumbilic or umbilic, not every point of type/1//2 needs 

to be a semiumbilic. Moreover, it was shown in [11] that  the semiumbilics of 

generically immersed surfaces in euclidean 5-space are isolated points (lying on 

curves of M2-points) and it is not difficult to see that  similar arguments apply 

to the case of surfaces generically immersed in Minkowski 5-space. A surface 

all of whose points are semiumbilic is said to be t o t a l l y  semiumbi l ica l .  Some 

of the properties of totally semiumbilical surfaces in ]~+1 are studied in [5]. In 

particular, for surfaces contained in hyperbolic 4-space we have 

PROPOSITION 3.2: Given a surface M C H~_(-1), the curvature ellipse 

of M at a point x E M is contained in an affine plane of N•  parallel to 

T~H~_(-1) N N x M .  

Proof'. Consider the position field p(x) - x on M. In isothermic coordinates, 

{x, y}, over M, this normal field satisfies 

<x==,p> = - < x x , x y >  = - E ,  

<x=y,p> = - < x x ,  x~> = - F  = 0, 

(x~,  p> = -<x~, xy> = - c  = -E ,  
where E, F and G are the coefficients of the first fundamental form on M. 

3 Now, if we express p = ~=]  piei in terms of a pseudo-orthonormal frame 

{el, e2, e3, e4, e5} as above, we have 

<Bx, p> 3 = - E ~ = I  p~(a~ - c~) = -<p ,x~=>  + < p , x ~ >  = 0, 
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<Cx,p> 3 = -- ~i=l Pi bi = (P' Xxy) = O. 

Therefore, the plane determined by the vectors Cx and Bx in NxM is pseudo- 

orthogonal to p. Since this is pseudo-orthogonal to the hyperbolic space H_~ (-1) ,  

we have the required result. | 

As a consequence of this, we see in the next section that  the generic behavior of 

semiumbilic points of surfaces contained in H~  ( - 1 )  differs from tha t  of surfaces 

in ]R 5. 

The s h a p e  o p e r a t o r  associated to a normal field u is defined as 

Sv: T M  --+ TM,  Sv(X)  = - ( ~ 2 P )  T, 

where P is a local extension to ]~5 of the normal vector field t~ at x and 0 T means 

the tangent component. This operator is bilinear, self-adjoint and satisfies the 

following equation: (S~(X) ,Y)  = H~(X,Y) ,  VX, Y e X(M) .  So we have that  

xl (x) = x>. 

We can find, for each x C M, an orthonormal basis of TxM consisting of 

eigenvectors of Sv, for which the restriction of the second fundamental form 

to the unit vectors IIv]s1 takes its maximal and minimal values. The corre- 

sponding eigenvalues kl, k2 are the u-principal curvatures. A point x is said 

to be t,-umbilic if both v-principal curvatures coincide at x. Let/4~ be the set 

of v-umbilics in M. For any x C M\L/ .  there are two v-principal directions 

defined by the eigenvectors of S~. These are smooth integrable direction fields 

and their integrals define two families of orthogonal curves which are called 

the u - p r i n c l p a l  l ines  o f  c u r v a t u r e .  The two orthogonal foliations with the 

v-umbilics as its singularities form the u - p r l n c i p a l  c o n f i g u r a t i o n  of M.  We 

say that  the surface M is u -umbi l i c a l  if each point of M is ~,-umbilic. Some 

umbilicity properties of surfaces immersed in Minkowski spaces have been stud- 

ied in [5]. In particular, it was shown (Proposition 5.1) that  a point x of a 

surface M C ]~15 is v-umbilic for some normal field t, if and only if L,(x) is 

pseudo-orthogonal to the vectors Bx and Cx that  define the curvature ellipse at 

x. Then for the particular case of a surface M C H ~ ( - 1 ) ,  as a consequence of 

Proposition 3.2, we have: 

/ f  p(x) = x is the position (normal) field on M, then each point of M is 
p-umbilical. 

On the other hand, we quote the following results obtained in [5]: 

PROPOSITION 3.3: A surface M C H~_(-1) is totally semiumbilical if and only 

if M is umbilical with respect to some lightlike normal field. 
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COROLLARY 3.4: A surface M c H ~ ( - 1 )  lies in a hyperhorosphere if and only 
if  it is umbilical with respect to some lightlike normal field v with constant zero 

curvature. 

4. C o n t a c t s  w i t h  l ight l ike  h y p e r p l a n e s  a n d  h y p e r h o r o s p h e r e s  

Suppose that  M and N are submanifolds of ~n+l locally defined by M -- g(R m) 
and N = f - l ( 0 ) ,  where g: R m --* R n+l is an embedding and f :  ]~n+l ~ ]~q 

is a submersion. We can measure the contact of M and N at a common point 

p 6 M N N  by analyzing the singularities of the map fog: R m --. l~q (contact map 

at p). In fact, if M and N are submanifolds of a manifold Z and M'  and N '  are 

submanifolds of Z' ,  we say that  M and N have the same contact at a point p as 

M'  and N '  at p' provided there exists a diffeomorphism germ r (Z, p) --* (Z',  p') 

taking M to M'  and N to N' .  In such a case we write K ( M ,  N)  = K ( M ' ,  N ' ) .  

J. A. Montaldi proved [10] that  this holds if and only if their respective contact 

map-germs at p and p' are ]C-equivalent. Here, we say that  two map-germs 

fi: (]~m, xi) ~ (]~P, Yi), i -- 1, 2 are ~ - e q u i v a l e n t  (denoted ~ ( f l )  = )~(f2)) if 

there is a diffeomorphism-germ (contact-equivalence), (I): (Rm • ]RP, (xl, Yl)) --* 

(~m X R p, (x2,Y2)) of the form r  = (h(x) ,O(x, t)) ,  such that  (I)(x, yx) = 

(h(x),y2) and O(x, f l ( x ) )  = (h(x) , f2(h(x) ) ) .  We refer to [2] or [7] for the 

definition and details on ~-equivalence. 

Therefore, to study the contact of a spacelike surface locally given as M = 

g(R 2) C R15 with some hyperplane whose pseudonormal vector is v, P(v,c) at 

a given point x = g(u) E M,  the map f has to be chosen in such a way that  

P(v,c) = f - l ( 0 ) .  That  is, 

f(Xl,.. .  ,xh) : - -Xl  "Vl ~ - ' ' ' ' ~ - X h "  V5 -- C, 

where v -- (vl , . . . ,Vh)  and x - -  (Xl, . . . ,Xh).  

To analyze all the possible contacts of the submanifold M -- g(~2) with the 

lightlike hyperplanes of R 5, we must describe the singularities of the l i gh tcone  

he igh t  f unc t i ons  f ami ly  

7-/: IR 2 x S ~  ~ R 

( u , v )  , , < g ( u ) , v > .  

We shall denote by hv the function obtained when fixing the parameter v. 

Clearly, u is a singular point of h~ if and only if v 6 Nx(u)M.  
Suppose now that  M lies in H_~(-1). Given v 6 S 3 and x �9 M, we denote by 

~(v ,  x) the hyperhorosphere o f / - / 4 ( -1 )  determined by the lightlike hyperplane 
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Pv,c with pseudo-normal v that  passes through the point x = g(u) (i.e., (x, v) = 

c). We have that  gt(v, x) is tangent to M at x if and only if u is a singular point 

of h,,. Furthermore, 

LEMMA 4.1: Given a surface M = g(R 2) C H ~ ( - 1 )  and x C M, the contact 

map-germs of the pairs (M, ~(v,  x)) and (M, P(,,,c)) at x coincide. 

Proo~ We have that  P(,,,c) = h(ff,~)(0), where h(,,,c): 1~5 _~ S is given by 

h(,,,c)(p) = (v ,p)  - c .  So if we represent by i : H~_(-1) --~ ~5 the canonical 

inclusion, we have that  the contact map for P(,,,c) and M is given by h(~,c) oiog. 

On the other hand, if we denote h(,,,c) = h(v,c)[H~ (-1), we have that  h(~c)(0) -- 

P(v,c) ~ H~_(-1) = ~ (v ,x ) ,  and hence h(~,c)o g is the contact map for i and 

ft(v, x). But, clearly,/t(~,~) o g = h(v,~) o i o g. | 

Given a singular point u of the function hv, we say that  v is a h o r o b i n o r m a l  

direction for M at x = g(u) if the hessian matrix Hesshv (u) defines a degenerate 

quadratic form. In this case, we have that  gt(v, x) has higher order contact 

with M at x and we call it an o scu l a t i ng  h y p e r h o r o s p h e r e .  A normal field 

v defined on some open subset V of M and such that  ~,(x) is a horobinormal 

direction at x, Vx c V, is called a h o r o b i n o r m a l  field on  V. 

Given x E M, consider the linear map Ax: N x M  --~ Q2 and denote by C 

the cone of degenerate quadratic forms in Q2. Clearly, v E N x M  determines a 

horobinormal if and only if v C A~ 1 (C) N LC• 

A particular feature of the spacelike surfaces contained in hyperbolic 4-space 

is the following: 

LEMMA 4.2: The points of type M2 of a surface M C /- /4(-1)  are all semi- 
umbilic. 

Proof." Take a point x E M of type M2 and suppose that  M is locally defined 

at x by an embedding g: ]~2 _~ H_~(-I),  such that  x = g(0,0). Then the 

height function hx(u) = (g(u), x) - (g(0, 0), x) = (g(u), x) + 1 describes the 

contact of M at x with the hyperplane, Px, that  is pseudo-orthogonal to the 

position vector p(x) and passes through x. By taking g in the Monge form, 

g(u) = (u, gl (u), g2 (u), g3 (u)), it is not difficult to verify that  the hessian matrix 

of hx at (0, 0) coincides with that of A• If we assume now that  x is not 

a semiumbilic point, it follows from Lemma 3.1, together with Proposition 3.2, 

that KerAx is spanned by the position vector x and hence Hesshx(O, 0) is the 

null matrix. This means that  (0,0) is a non-stable singularity of hx, which 

implies that  the extension of this function to / - /4(-1)  also has a non-stable 



370 S. IZUMIYA, D. PEI AND M. C. ROMERO-FUSTER Isr. J. Math. 

singularity at x e H~_(-1). But it can be seen that  the contacts o f / - / 4 ( - 1 )  

with all its tangent hyperplanes are non-degenerate in the sense that  they lead 

to a stable height function. So we arrive at a contradiction. I 

This leads to the following result, concerning the distribution of semiumbilic 

points over surfaces generically immersed in H~_ ( -1 ) ,  which supposes an inter- 

esting difference with respect to the generic behaviour of surfaces immersed in 

Minkowski 5-space. 

PROPOSITION 4.3: Given a surface M generically immersed in H ~ ( - 1 ) ,  the 

points of type M3 fill an open and dense submanifold and the semiumbilic 

points are all of type M2 and define a closed curves embedded in M.  Umbilic 

points do not appear on these surfaces. 

Proof: Let A(x) = detAx.  It is clear that  A- l (0 )  = M - M3. Since A is a 

continuous function on M, we have that  M3 must be an open region in M. The 

condition that  x E M2 implies, by Lemma 4.2, that  x is semiumbilic. But this 

amounts to saying that  the normal vectors Bx and Cx are linearly dependent. 

Since by Proposition 3.2 we know that  B,, ,Cx E TxH~_(-1), it follows that  

the position vector x must be pseudo-orthogonal to both Bx and Cx. We can 

consider that  M is locally given as an embedding g: ~2 _~ H~_(-1) c R~ in the 

Monge form at x. Then we take a pseudo-orthonormal frame {el, e2, e3, e4, e5} 

for M in a neighborhood of the point x in such a way that  el is the position 

vector field, e2 and e3 are normal vector fields while e4 and e5 generate the 

tangent planes. In these coordinates, we can write 

1 1 
B x = - ~ ( a 2 - c 2 ) ' e 2 - ~ ( a 3 - c a ) ' e 3  and C ~ = - b 2 . e 2 - b 3 . e a .  

Then the linear dependence of these two vectors is given by the requirement 

a2 - -  c 2  a3 -- e3 

b2 b3 ' 

which defines a 1-codimensional algebraic variety of the jet space J2(R2, Rs). It 

follows now from the Thorn Transversality Theorem ([2]) that  the 2-jet exten- 

sion, j2g: ]i(2 _~ j2(~2 ,Rs) ,  meets this submanifold transversally. Therefore, 

the considered points determine an algebraic subset of codimension 1 in M. 

On the other hand, the condition that  x E M1 U Mo is equivalent to asking 

that  rank Ax < 1. This means that  the vector Hx must also be parallel to 

both B~ and Cx. This provides at least three independent quadratic equations 

in j2(~2,  Rs) and, by using again the Thorn Transversality Theorem, we can 
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conclude that,  for a generic g, j2g does not meet the corresponding algebraic 

variety, and thus Mi U/140 = ~. 

So A- l (0 )  = M2 is completely made of semiumbilic points. We see now that  

they form embedded curves. In fact, let 

g: R2,0 ---+ ~ 

(u, v) (u, v, gl (u, v), gs(u, g3 (u, v)) 

be the local representation of M in the Monge form at x E /142. In these 

coordinates, 

A(x) =gluug2uvgavv - gluvg2uug3vv - gluugsvvg3uv 

+ givvgs~g3uv -4- gl~vf2,~vf3~ - 5 v v f 2 ~ v f a u , .  

It follows from this expression that,  under appropriate transversality conditions 

on the 3-jet of g, the set A = 0 represents a curve, possibly with isolated singular 

points determined by the vanishing of the derivatives of the function A. We 

observe that the pseudo-orthogonality property of the frame {el, e2, e3, e4, e5} 

is irrelevant for our study. For a change of basis in N •  preserves the relative 

position of I m ( A x )  with the cone C in Q2, and thus preserves the sets/143 and 

/I//2. So we can take {el, e2, e3} such that  el generates Ker(Ax). 

If p E/142, we have three possibilities: 

(i) I m ( A x )  (3 C is a couple of lines, 

(ii) I m ( A x )  A C is a line, and 

(iii) Ira(A, , )  A C is just the origin. 

In case (i) we can choose {e2, e3} as the two (degenerate) directions lying in 

A - I ( c )  C N p M .  Furthermore, we can also make a change of coordinates in 

the source such that  the two degenerate directions correspond to the quadratic 

forms u s and v s in C. Thus, g can be locally written as 

g(u,v)  = s + Rl(u, ),v + R2(u,v) ,R3(u,v) ) ,  

where Ri E m 3, i.e., all the derivatives of the Ri vanish up to order 3, i = 1, 2, 3. 

In case (ii), Ira(A• is tangent to C and we take e3 as the generator of 

A ~ i ( I m ( A x )  A C). With additional changes of coordinates in the source, g can 

be written as 

9 (u , v )  -~ ( .a ,v ,u  2 -- V s + Rl( l t ,  v) , 'uy + R2(u, Y), R3(u,y)).  

Finally, in case (iii), all the quadratic forms Ax(v) are hyperbolic, and g can 

be written as 

g(u , v )  = ( u , v , u  2 + R i ( u , v ) , u v  + R 2 ( u , v ) , R 3 ( u , v ) ) .  
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In each of the above cases it is a simple (but tedious) calculation to verify 

that ,  under generic conditions on the 3-jet of g at (0, 0), the derivatives of the 

function A do not vanish at x and thus it is a regular point of A-l(0). I 

We analyze next all the possibilities that  we may have for the sets 

Axl(C) N LCx at different points x E Mi, i = 3, 2, 1,0: 

(a) If x E M3, then A~I(C) is a non-degenerate cone. The intersection 

A~ 1(C) (1 LCx depends on the relative position of both cones and may consist 

of either four, three, two, one or zero lines in NxM. We remark that  it may 

also happen that both cones A~ 1 (C) and LC. coincide, but this is an extremely 

degenerate phenomena that  can be generically avoided, so we shall not consider 

it here. 

(b) If x E M2, as we have seen before, the plane ImA~ intersects the cone C 

in either (i) two lines, (ii) one line, or (iii) just the origin. In this case A ; I ( c )  

is respectively made of (i) two planes with the common line Ker A.,  (ii) a plane 

containing the line Ker A. ,  or (iii) just the line Ker Ax. Again, the intersection 

A~ 1 (C) M LC~ depends on the relative positions of both subsets and will consist 

of at most four lines in N~M. 
(c) If x E M1, then ImA~ is a line that  may either lie on C, or intersect 

it just at the origin. Correspondingly, A~ 1 (C) will be the whole normal space 

N~M, or a plane. It follows that  A~I(C) M LCx is the whole LC. in the first 

case, or at most two lines in the second. 

(d) Finally, if x C M0, then A;I(C) is the whole normal space and 

A;I(C) M LC:, = LCx. 
Therefore, by taking into account that  generic surfaces in / - /4(-1)  are 

exclusively made of points of types M3 and semiumbilics (M2), we can state 

the following 

PROPOSITION 4.4: The number of osculating hyperhorospheres at any point of 
a surface M generically immersed in/-/4(-1) is at most four. 

A point x E M of type M3 or M2 is said to be ho roe l l i p t i c  if the subset 

A~I(C) intersects LCx just at the origin. On the other hand, it is said to be 

h o r o h y p e r b o l i c  or h o r o p a r a b o l i c  according to whether they have transversal 

or non-transversal intersections off the origin. It is not difficult to verify that,  

generically, horoelliptic and horohyperbolic points determine open submanifolds 

of M separated by horoparabolic curves. For the particular case of a non- 

semiumbilic M2-point x, we observe that  x is necessarily horohyperbolic, having 

four horobinormals in the case (b,i), horoparabolic with two horobinormals in 
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the case (b,ii), and horoelliptic with no horobinormals in the case (b,iii). On 

the other hand, if x E M2 is semiumbilic then both cases (b,i) and (b,ii) may 

correspond to either horolwperbolic, horoparabolic or horoelliptic points. Here 

we observe that  horohyperbolic points may have either four or two horobinormal 

directions, due to the fact that  the line Ker Ax does not need to lie inside the 

lightcone. Taking into account these considerations, we conclude 

PROPOSITION 4.5: I f  M C H~_(-1) is exclusively made of horohyperbolic 

points, then it has either four or two globally defined horobinormal fields. 

As a consequence of the methods developed by Montaldi ([10]), it can be 

shown that,  analogously to what happens in the case of surfaces generically 

immersed in Euclidean space, the rank of Hesshv(u), for any horobinormal v, 

is 1 at most points x = X(u) C M. The points at which this rank is 0 are 

those at which the surface is bet ter  approached by some hyperhorosphere in all 

the tangent directions. These are analogous, in horospherical geometry terms, 

to the inflection points of surfaces in euclidean 4-space ([1]) and will be called 

h o r o s p h e r i c a l  po in t s .  

PROPOSITION 4.6: Tile horospherical points of a surface M immersed in 

H~_(-1) are either semiumbilics or umbilics. Moreover, every point of type 

M1 or Mo is a horospherical point. 

Proof: Suppose that  M is given in the Monge form at a horospherical point 

x = g(0, 0) and take a pseudo-orthonormal frame {el, e2, e3, ea, es} in a neigh- 

borhood of x such that  {ea, es} is a tangent frame and {el, e2, e3} is a normal 

frame with (e l ,  el} ---- --1 as above. Then for any normal vector v E NxM, we 

can write v = vie1 + v2e2 + vae3. We observe that  the matrices Ax(v) and 

Hesshv(O, 0) coincide. Now, under the assumption that  x is horospherical, we 

can choose a horobinormal vector v C NxM A S~_(x) such that  all the entries of 

the matrix Hesshv(O, 0) vanish. This implies that  IIv also vanishes at x. So we 

have that  -v ia l  + v2a2 + v3a3 = - V l b l  ~- v252 ~- v353 = -VlCl  + v2c2 + v3c3 = 0, 

where the ai, bi, ci, i = 1, 2, 3 are as in the previous section. But this means that  

the vectors Bx and C• which determine the curvature ellipse at x, are both  

pseudo-orthogonal to the lightlike direction v. On the other hand, it follows 

from Proposition 3.2 that  they are also pseudo-orthogonal to the timelike nor- 

real direction, x, to H ~ ( - 1 )  at x. Therefore, rank(B~, C~) < 1. This implies 

that  the curvature ellipse is degenerate at x and the first assertion is shown. 

To see the second, we observe that,  given x E M1, it follows from Lemma 3.1 

that  the plane Ker Ax is pseudo-orthogonal to the direction determined by the 
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(linearly dependent) vectors Bx and Cx. But Proposition 3.2 implies that  this 

direction is contained in the plane TxH~_(-1). Therefore, we get that  KerAx 

must contain the line (x) spanned by the position vector p(x) at the point x. So 

KerAx cuts the lightcone at x. This determines two horobinormals for which 

the hessian of the corresponding lightcone height function has rank 1, and hence 

x is a horospherical point. In case x E M0, we have that  all the horobinormals 

give rise to lightcone height functions whose hessian has rank 1 at x. II 

We remark, in particular, that  the surfaces contained in a hyperhorosphere of 

H ~ ( - 1 )  are a special case of a totally semiumbilical surface, as can be concluded 

from Proposition 3.3 and Corollary 3.4. 

5. H o r o a s y m p t o t i c  d i r e c t i o n s  

Given a surface M immersed in H_~(-1), consider a local parametrization 

X : U ~ H ~ ( - 1 )  of M at a point x. I f v  e S3(x)  is a horobinormalof  

M at x = X(u),  we have that  u is a degenerate singularity for the height func- 

tion h,,. Therefore, KerHess(hv)(U) r {0). The non-zero directions lying in 

KerHess(hv)(u) are called h o r o a s y m p t o t i c  directions at x. We observe that  

these are the tangent directions at x along which the higher order contact of 

M and the hyperhorosphere f~(v,x) occurs. Clearly, any horobinormal field 

determines a (tangent) horoasymptotic field on the region of M over which it 

is defined. It follows from the definition of both horoasymptotic directions and 

horospherical points that  the latter are the critical points of the horoasymp- 

totic fields. We investigate next the possibilities of having some globally defined 

horoasymptotic field on M. 

LEMMA 5.1  : 

(i) Two horobinormals bl and b2 at a point x E M of type M3 cannot share 

horoasymptotic directions. 

(ii) Provided x E M is of type Mi, i < 3, two horobinormals, bx and b2, 

share a horoasymptotic direction if and only if they belong to some linear 

subspace contained in Ax 1 ( C). 

Proof (i) Suppose that  0 is a common asymptotic direction for bl  and b2 at 

x. In such a case we can choose coordinates on M at x in such a way that  

[ 01 0 

But then the normal direction b = A2bl - A l b 2  has vanishing Hessian matrix at 

x, which means that  x is a horospherical point. By Proposition 4.3 this implies 
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that  x is a semiumbilic point and these are of type Mi, i < 3. So we have 

arrived at a contradiction. 

(ii) A similar argument to the one used in part  (i) tells us that  common 

horoasymptotic directions for bl  and b2 at a point x lie in the kernel of any 

of their linear combinations. Therefore, b l  and b2 define a plane made of 

degenerate directions of NxM, in the sense that  all of them are mapped by 

Ax into the cone C. Conversely, take any b E A~I(C) that  does not belong 

to KerAx (if all the degenerate directions lie in KerAx,  we would have that  

all of them would share all the tangent directions in TxM as horoasymptotic 

directions and the result would be trivially true). Then given any other b ~ lying 

in the same subspace than b in Axl (C) ,  we can always write b ~ = Alb ~- A2b tl, 

for some b"  C KerA• and real numbers Ai,i = 1,2. I t  is not difficult to see 

that  in this case b and b t share some horoasymptotic directions. | 

THEOREM 5.2: 

(i) A generic surface M C H~_(-1), all of whose points are horohyperbolic, 

has either two or four globally defined horoasymptotic fields that may 

eventually coincide pairwise over closed curves of semiumbilic points. 

(ii) If M is totally semiumbilical with isolated horospherical points and such 

that all its points are horohyperbolic, then M has either one or two 

horoasymptotic fields globally defined that  may eventually coincide over 

some dosed subset. 

Proof: (i) In this case the horohyperbolicity ensures the existence of either 

two or four globally defined horobinormal fields which are not coincident at 

any point, otherwise this point would be horoparabolic. Then Lemma 5.1 (a) 

guarantees the existence of either two or four horoasymptotic fields respectively 

over the open surface/I//3. Part  (ii) of Lemma 5.1 tells us that  the horoasymp- 

totic directions coincide pairwise over the semiumbilic points. We recall that ,  

according to Proposition 4.3, the semiumbilic points define closed curves on the 

generic surfaces. 

(ii) Under this second asumption the horohyperbolicity condition ensures the 

existence of either two or four horobinormals at each point. Due to the absence 

of horoparabolic points, we can assert that  these determine globally defined 

horobinormal fields on M, which in turn determine either one or two horoasymp- 

totic fields. Again, we have that  the horobinormal pairs may be coincident at 

points for which the image of A• is tangent to the cone C. This implies that  

the two horoasymptotic directions will also be coincident at such points. We 
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point out that  in highly degenerate cases, this may happen over the clausure of 

some open region and even over the whole surface M. | 

COROLLARY 5.3: A generic surface i n / / 4 ( - 1 )  exclusively made of horohyper- 

bolic points which is compact without boundary and has nonvanishing Euler 
number has horospherical points. 

Proof: This follows immediately by applying the Poincar~-Bendixon index 

formula to any of the horoasymptotic direction fields guaranteed by part (i) of 

Theorem 5.2. | 

We observe that  the same assertion is valid for surfaces satisfying the asump- 

tion (ii) of Theorem 5.2. 

We recall that  Ca ra th@odory ' s  c o n j e c t u r e  asserts that  a 2-sphere im- 

mersed in ~3 has at least two umbilic points. We observe that  the inverse 

of the stereographic projection takes umbilics of surfaces in 3-space to inflection 

points of their images in the S 3 considered as surfaces in euclidean 4-space. 

This naturally leads to the following gene ra l i zed  Ca ra th @ o d o ry ' s  conjec-  

t u r e :  2 - spheres  c o n v e x l y  e m b e d d e d  in R 4 have  a t  leas t  two inf lec t ion  

po in t s .  Here, the convexity property is equivalent to the global existence of 

asymptotic directions (see [1] for a proof in the case of generic surfaces in 

euclidean 4-space). By analogy of this situation with the case considered here, 

we establish the following 

CONJECTURE: A 2-sphere immersed as an everywhere horohyperbolic surface 
in hyperbolic 4-space has at least two horospherical points. 

We finally find a relation between the semiumbilicity of a spacelike surface 

and the orthogonality of the horoasymptotic directions. 

THEOREM 5.4: Suppose that M is a surface in / / 4 ( - 1 )  with two globally 

defined horoasymptotic fields and isolated horospherical points. If  M is 
totally semiumbilical, then the horoasymptotic directions are mutually 
orthogonal everywhere except at the horospherical points. 

Proof: We observe first that  M is totally semiumbilical if and only if there 

exist two normal fields Ul, L'2, locally defined and linearly independent at every 

non-umbilical point of M, such that  M is vi-umbilical ([5], Theorem 5.6). We 

shall show now that  this requirement on M is also equivalent to having a unique 

principal configuration. In fact, given x E M, consider isothermal coordinates 

{u, v} in a neighbourhood Ux of x and take normal fields u 1 and/2 2 defined on Ux 
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such that  M is uJ-umbilical, j = 1, 2. Without  loss of generality we can take u 1 

as the position vector field on M, and u 2 as a vector field, u, tangent to H ~ ( - 1 ) .  

Let ~ be another normal field such that  {p, ~, u} defines a pseudo-orthonormal 

frame for the normal bundle N U x .  Then, given any normal field ~, we can write 

7} = k i p  + k2~ + k3v,  for appropriate smooth functions kl, k2, k3: U --* •. The 

coefficients of the second fundamental form in the direction of ~ are given by 

e n = ( 0 2 X / O x  2, k i p  + k2~ + k2u) = k l e  o + k2e~ + k3e~, 

f'l = (02X/C~xC~y' k lP  -~ ]g2~ "{- k31]) = ]glfp + k2f~ ~- k3f~,, 

g,1 = ( 0 2 X / O Y  2, k i p  + k2~ + k3v} = k lgp  + k2g~ + k3gv; 

and the equation of the curvature lines in these coordinates becomes ([5], [12]) 

h ( f ~ d u  2 + (g~ - e~)dudv  - f~dv  2) + k ,  ( f v l  du  2 + (g~,l - e,~ )dudv  - fi,~ dv  2) 

+ k2 (fv2 du  2 + (g~,2 - e~,2 ) dudv  - fv2 dv  2) = O. 

Since M is p- and v-umbilical, we have that  ep(x) = gp(x), fp(x) = 0 and 

ev(x) = g~(x), fv(x)  = 0 for all x e M,  and thus f p d u 2 + ( g p - e p ) d u d v - f p d v  2 = 

0 and f v d u  2 + (gv - e v ) d u d v  - f v d v  2 = O. Therefore, the principal configuration 

associated to ~ is given by h ( f ~ d u  2 + (g~ - e~ )dudv  - f ~ d v  2) = 0. So both fields 

7? and ~ have the same principal configurations. 

Conversely, if M C H~_(-1), then M is p-umbilical, where p is the position 

field. Take x E M and let ~1 and ~72 be two linearly independent normal fields 

defined in a neighborhood Ux of x in M,  that  lie in TxH~_(-1) (i.e., they are 

pseudo-orthogonal to p). Their respective principal configurations are given by 

the equations f,7~du 2 + (g,7, - e,7,)dudv - f,~, dv2 = 0, for i = 1,2. Since M 

admits a unique principal configuration, we must have tha t  f ,  I1 = )~fv2 and 

g~l - e m  =/~(gn2 - en2), for some function )~ on Ux. Taking p = ~/1 - A7/2 we 

have that  f~ = fv~ - Aft2 = 0 and gp - e~ = g m  - e~l - A(gn2 - en2) = 0. 

Therefore, M is ~-umbilical. Since P and p are pseudo-orthogonal, they must 

be linearly independent of Ux. 

Finally, suppose that  ~1 and 02 are the two distinct horoasynlptotic fields 

globally defined on M, and let bi, i = 1, 2 be the corresponding horobinormal 

fields, which must be distinct too. By taking appropriate coordinates on M we 

can see that  the direction 0i is a principal direction for the shape operator Sb, 

and its corresponding principal curvature vanishes everywhere. Since M has 

a unique principal configuration, we have that  the principal configurations of 

bl and b2 coincide. Therefore 02 (resp. ~ )  must be the principal direction of 

bl (resp. b2) corresponding to the non-vanishing principal curvature. But this 
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means that  01 and 02 are everywhere orthogonal, except at the critical points 

of the principal configurations. | 

Remark: In the case of a surface M immersed in euclidean 4-space, we have 

that  the orthogonality of horoasymptotic directions is a sufficient condition for 

total  semiumbilicity ([13]). This is due to the fact that  if b~,i = 1,2 are the 

horobinormal fields on M and ki, i -- 1, 2 are the corresponding non-vanishing 

curvatures, then the normal field u = k2bl - klb2 is umbilical over M. In the 

euclidean case, this is a sufficient condition for semiumbilicity of M. In the 

horospherical case, we need to require the existence of some umbilical field over 

M tha t  is everywhere tangent to H~_(-1). To be able to ensure this we must 

have tha t  u = k2bl - k l b 2  is not a multiple of the position field p over M. It  is not 

clear at all tha t  this is always the case for a surface having everywhere orthogonal 

horoasymptotic fields. Nevertheless, we can assert that  under the orthogonality 

assumption on the horoasymptotic fields, M is totally semiumbilical provided 

the normal field L, = k2bl - klb2 is not a multiple of p. 
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